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Abstract. We define a Fourier transformS for the quantum doubleD(G) of a finite groupG.
Acting on characters ofD(G), S and the central ribbon element ofD(G) generate a unitary matrix
representation of the groupSL(2,Z). The characters form a ring over the integers under both
the algebra multiplication and its dual, with the latter encoding the fusion rules ofD(G). The
Fourier transform relates the two ring structures. We use this to give a particularly short proof of
the Verlinde formula for the fusion coefficients.

1. Introduction

The quantum doubleD(G) of a finite groupG is a quasi-triangular ribbon Hopf algebra [1]
constructed, via Drinfeld’s double construction [2], out of the Hopf algebraC(G) ofC-valued
functions onG. Such quantum doubles arise in physics in orbifold conformal field theories [3]
and in the classification of flux-charge composites in the massive phases of (2+1)-dimensional
gauge theories [4, 5]. The mathematical structure ofD(G) was clarified in [6]. There and
in [3] it was also pointed out that the set of irreducible representations ofD(G) carries a
representation of the groupSL(2,Z) by unitary, symmetric matrices. In particular, one has a
symmetric and unitary matrixS and a diagonal, unitary matrixT acting on the set of irreducible
representations which satisfy the modular relation(ST )3 = S2 andS4 = 1. Although perhaps
surprising from the point of view of Hopf algebras, the appearance of theSL(2,Z) action in
the representation theory ofD(G) is physically motivated by application ofD(G) in orbifold
conformal field theories. In particular, it has already been pointed out in [3] that the matrixS

plays the role of the Verlinde matrix which diagonalizes the fusion rules in orbifold conformal
field theory (for a general review of fusion rules in conformal field theory we refer the reader
to [7]). As a result one has a Verlinde formula [8] for integer fusion coefficients in terms of
(generally non-integer) matrix elements of the Verlinde matrixS.

A central goal of this paper is to understand the role of the groupSL(2,Z) in the
representation theory ofD(G) without reference to conformal field theory. Our starting point
here is the set of characters of irreducible representations ofD(G). The groupSL(2,Z) acts
on this set in a geometrically natural way. We identify two generatorsS andT of this action
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(satisfying(ST )3 = S2 andS4 = 1) which play a natural role in the theory ofD(G) and its
dualD(G)?. It was already noted in [6] that the diagonal matrixT is related to the central
ribbon element ofD(G). As vector spaces, bothD(G) andD(G)? can be identified with the
spaceC(G×G) of C-valued functions onG×G, and here we show thatS can be extended
to an automorphism of the vector spaceC(G×G). We prove a convolution theorem for this
extension which shows that it has a natural interpretation as a Fourier transform. Returning to
the set of characters we show that it can be given a ring structure in two dual ways. One, using
the algebra multiplication, is essentially determined by Schur orthogonality relations. The
other, using the dual multiplication, encodes the fusion rules ofD(G). Our Fourier transform
relates the two ring structures, and we use this to give a very short proof of the Verlinde formula
for D(G).

Quantum doubles can also be defined for locally compact groupsG [9] and we have used a
notation which anticipates the generalization of the arguments given here to quantum doubles
of locally compact groups. There are a number of technical problems, however, which we
intend to address in a future publication. Finally, we observe that the Fourier transform we
will define in this paper is related to the non-Abelian Fourier transform defined by Lusztig in
the context of finite group theory, see [10, 11], and to the quantum Fourier transform defined
by Lyubashenko in [12] and discussed further by Lyubashenko and Majid in [13,14]. We will
clarify the relationship between these definitions and ours in the course of the paper. There
are several other places in the literature where Fourier transforms are discussed in the context
of quantum groups. The focus of [15, 16] is braided quantum groups and is thus different
from ours. In section 3.4 of [17] a Fourier transform is defined for finite-dimensional Hopf
algebras. However, when applied to the quantum double of a finite group that definition yields
something essentially different from our Fourier transform.

2. The quantum double of a finite group

LetG be a finite group, with invariant measure given by

∫
G

f (z) dz := |G|−1
∑
z∈G

f (z). (2.1)

We will use delta functionsδx onG, normalized so thatδx(y) = 0 if x 6= y andδx(x) = |G|.
The quantum doubleD(G) of a finite groupG was first studied in detail in [6]. The

definitions we are about to give are equivalent to the ones given there, but we adopt a different
notation. The advantage of our notation is that it easily generalizes to the case whereG is a
locally compact Lie group [9]. As a linear space we identify the quantum doubleD(G) of G
with C(G×G). OnD(G) we have a non-degenerate pairing

〈f1, f2〉 :=
∫
G

∫
G

f1(x, y) f2(x, y)dx dy. (2.2)

By this pairing we can also identify the dualD(G)? ofD(G)with C(G×G) as a linear space.
OnD(G) we have multiplication•, identity 1, comultiplication1, counitε, antipodeκ
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and involution∗ given by

(f1 • f2)(x, y) :=
∫
G

f1(x, z) f2(z
−1xz, z−1y) dz

1(x, y) := δe(y)
(1f )(x1, y1; x2, y2) := f (x1x2, y1)δy1(y2)

ε(f ) :=
∫
G

f (e, y)dy

(κf )(x, y) := f (y−1x−1y, y−1)

f ∗(x, y) := f (y−1xy, y−1).

(2.3)

By duality we have multiplication?, identityι, comultiplication1?, counitε?, antipodeκ? and
involution ◦ onD(G)?:

(f1 ? f2)(x, y) :=
∫
G

f1(z, y)f2(z
−1x, y)dz

ι(x, y) := δe(x)
(1?f )(x1, y1; x2, y2) := f (x1, y1y2)δx2(y

−1
1 x1y1)

ε?(f ) :=
∫
G

f (x, e)dx

(κ?f )(x, y) := f (y−1x−1y, y−1)

f ◦(x, y) := f (x−1, y).

(2.4)

Later, we will also refer to the ribbon algebra structure ofD(G). Following the
conventions for ribbon Hopf algebras of section 4.2 in [1], we define the universalR-matrix
R ∈ D(G)⊗D(G):

R(x1, y1; x2, y2) = δe(y1)δe(x1y
−1
2 ) (2.5)

and the central ribbon elementc ∈ D(G):
c(x, y) = • ◦ (κ ⊗ id)(R21) = δe(xy) (2.6)

whereR21(x1, y1; x2, y2) := R(x2, y2; x1, y1). The monodromy elementQ ∈ D(G)×D(G)
is

Q(x1, y1; x2, y2) := (R21 • R)(x1, y1; x2, y2) = δy1(x2)δy2(x
−1
2 x1x2). (2.7)

Together withc, it satisfies the ribbon relation

1c = Q−1 • (c ⊗ c). (2.8)

In the representation theory ofD(G) andD(G)? an important role is played by the Haar
functionalsh?:D(G)?→ C andh:D(G)→ C, respectively. They are given by

h?(f ) :=
∫
G

f (e, y)dy and h(f ) :=
∫
G

f (x, e)dx. (2.9)

Here we have chosen the normalizationh?(ι) = h(1) = |G|. Direct computation shows left
and right invariance:

((h? ⊗ id) ◦1?)(f ) = h?(f )ι = ((id⊗h?) ◦1?)(f ) (2.10)

and similarly forh. Furthermore, centrality, positivity and faithfulness ofh andh? follow from
the formulae

h(f1 • f ∗2 ) = h?(f1 ? f
◦
2 ) =

∫
G

∫
G

f1(x, y)f2(x, y)dx dy (2.11)
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and

h?(f ? f ◦) =
∫
G

∫
G

|f (x, y)|2 dx dy. (2.12)

Thus,C(G×G) has a Hermitian inner product

(f1, f2) 7→ h?(f1 ? f
◦
2 ) = 〈f1, f2〉. (2.13)

From the existence of faithful positive linear functionals onD(G) andD(G)? (namelyh
andh?) we can conclude thatD(G) andD(G)? both have a faithful∗-representation on a finite-
dimensional Hilbert space, so they areC∗-algebras. Therefore, the theory of Woronowicz [18]
for compact matrix quantum groups holds both forD(G) andD(G)?. Moreover, this theory
simplifies because we are in the finite-dimensional case, see [18], appendix A.2, and [19].
These simplifications are already evident in our explicit results thatκ2 = id and(κ?)2 = id,
and thath andh? are central. Furthermore, in [19] after the proof of proposition 2.2, van
Daele gives a formula in terms of dual bases for the Haar functional in the finite-dimensional
C∗-algebra case. ForD(G)? this can be written as

h?(f ) = const.
∑
x,y∈G

(f ? δx,y)(x, y). (2.14)

A simple calculation indeed shows that this agrees with (2.9). An analogous formula
holds forh.

3. Irreducible representations and their characters

The irreducible representations of the quantum double of a finite group were classified in [6].
We adopt some of the notation used there, but for our description of the representations we
follow the approach used in the discussion of the double of a locally compact group in [9,20].
Thus let{CA}A=0,...,p be the set of conjugacy classes inG, with C0 = {e}. In eachCA pick an
elementgA and writeNA for the centralizer ofgA in G. For later use it is also convenient to
pick, for eachx ∈ G, an elementBx ∈ G such that

BxgAB
−1
x = x if x ∈ CA. (3.1)

Write qA for the number of irreducible representations ofNA and let{πα} be a complete
set of such representations. The labelα is a positive integer running from 1 (for the trivial
representation) toqA. We denote the carrier spaces byVα and their dimensions bydα. Then
the irreducible representationsπAα of D(G) are labelled by pairs(A, α) of conjugacy classes
and centralizer representations. The carrier spaceV Aα of πAα is

V Aα := {φ : G→ Vα|φ(xn) = πα(n−1)φ(x), ∀x ∈ G, ∀n ∈ NA} (3.2)

and the action of an elementf ∈ D(G) is

(πAα (f )φ)(x) :=
∫
G

f (xgAx
−1, z)φ(z−1x) dz. (3.3)

The set{πAα } is a complete set of mutually inequivalent irreducible matrix∗-representations
of D(G). We write dA,α for the dimension ofV Aα and note thatdA,α = |CA| · dα. Then,
after choosing an orthonormal basis ofV Aα , πAα can be represented by a matrix(πAα )ij ,
i, j = 1, . . . , dA,α. The matrix elements(πAα )ij are elements ofD(G)? and we writeMA,α for
the span of the matrix elements(πAα )ij (i, j = 1, . . . , dA,α). Then it follows from Woronowicz’s
general theory thatD(G)? is the orthogonal direct sum of the spacesMA,α. Finally, we define
the character

χAα =
dA,α∑
i=1

(πAα )ii . (3.4)



Fourier transform and the Verlinde formula 8543

Characters play a fundamental role in the following discussion. From [20] we have the
following formula:

χAα (f ) =
∫
G

∫
NA

f (zgAz
−1, znz−1)χα(n) dn dz. (3.5)

Changing integration variables, this can be rewritten as

χAα (f ) =
∫
G

∫
G

f (v,w)1A(v)δe(vwv−1w−1)χα(B
−1
v wBv) dv dw (3.6)

where1A is the characteristic function of the conjugacy classCA, normalized so that1A(v) = 1
if v ∈ CA and1A(v) = 0 otherwise.

By definition, characters are elements ofD?(G). Using the pairing〈, 〉 we can therefore
identify them with functions onG×G. To do this explicitly we insert a delta function forf ,

χAα (x, y) := χAα (δx ⊗ δy) = δe(xyx−1y−1)1A(x)χα(B−1
x yBx) (3.7)

and reproduce the character formula given in [6]. One checks that the characters enjoy the
orthogonality relation

〈χAα , χBβ 〉 = |G|δαβδAB. (3.8)

As elements ofD(G)? characters have the property that they are cocentral, i.e. they satisfy
1?χAα = σ ◦ 1?χAα , whereσ : D(G)? × D(G)? → D(G)? × D(G)? is the flip operation,
σ(λ, µ) = (µ, λ). Using again the identification ofD(G)? with C(G ×G), the cocentrality
of the characters (3.7) means that their support lies in

Gcomm := {(x, y) ∈ G×G|xy = yx} (3.9)

and that they are invariant under the simultaneous conjugation of both arguments, in symbols
χAα (gxg

−1, gyg−1) = χAα (x, y) for all g, x, y ∈ G. These properties are also evident in the
explicit expression (3.7). We writeC(Gcomm) for the space of functions inC(G×G) whose
support lies inGcomm, andC0(Gcomm) for the space of functions inC(Gcomm) which are
invariant under the simultaneous conjugation of both arguments. It follows from the remark
in [18] after corollary 5.10 that the characters in fact spanC0(Gcomm). It is instructive to see
this explicitly. The dimension ofC0(Gcomm) is equal to the number ofG-conjugacy classes
inGcomm. To count these, introduce an integer labela for NA-conjugacy classes inNA. Since
the number of such conjugacy classes is equal to the number of irreducible representations,a

runs from 1 toqA. In theNA-conjugacy class labelled bya pick an elementgaA. Then every
G-conjugacy class inGcomm contains a unique element of the form(gA, gaA) for suitableA and
a. The number of conjugacy classes is therefore

dim(C0(Gcomm)) =
p∑
A=0

qA. (3.10)

This is also the number of irreducible representations(A, α) of D(G) and hence the number
of characters. By the orthogonality relation, the characters are certainly linearly independent
and therefore form an orthogonal basis ofC0(Gcomm).

The vector spaceC0(Gcomm) is closed under both the multiplication• and the dual
multiplication ?. This means that the vector space spanned by the characters can be given
two algebra structures which are dual to each other. Both these algebras are initially defined
over the fieldC, but in the following section we will show that the structure constants for both
algebras are integers. Therefore, the integer linear combinations of characters form a ring over
Z under both the multiplications• and?.
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4. Character rings

Again following the general theory given in [18], the matrix elements(πAα )ij form a complete
set of mutually inequivalent irreducible matrix corepresentationsπAα of D(G)?. We therefore
have

1?((πAα )ij ) =
∑
k

(πAα )ik ⊗ (πAα )kj . (4.1)

The quantum analogues of Schur’s orthogonality relations, given in [18], simplify forD(G)

because(κ?)2 = id. We have

〈(πAα )ij , (πBβ )kl〉 = h?((πAα )ij ? (πBβ )◦kl) = δαβδABδik δjlh?(ι)/dA,α. (4.2)

Note that due to a standard theorem in the theory of finite groups, see [21,22], the ratio

nAα := h?(ι)/dA,α = |NA|/dα (4.3)

is an integer. These relations are sufficient to establish the following theorem.

Theorem 4.1.The mapf 7→ (nAα )
−1χAα •f is the orthogonal projection ofD(G)? ontoMA,α.

Proof. We have:

〈χAα • (πBβ )ij , (πCγ )kl〉 = 〈χAα ⊗ (πBβ )ij ,1?(πCγ )kl〉 =
∑
r

〈χAα , (πCγ )kr〉〈(πBβ )ij , (πCγ )rl〉

=
∑
m,r

〈(πAα )mm, (πCγ )kr〉〈(πBβ )ij , (πCγ )rl〉 = δACδBCδαγ δβγ δikδjl(nAα )2.

�
As an immediate consequence we note the following.

Lemma 4.2. The characters of the quantum doubleD(G) of a finite groupG form a ring over
Z under the multiplication•. The multiplication rule is

χAα • χBβ = δABδαβnAα χAα . (4.4)

Next consider the algebra structure of the characters under the dual multiplication?. This
is related to the tensor product decomposition into irreducible representations:

πAα ⊗ πBβ '
⊕
C,γ

N
ABγ

αβC π
C
γ . (4.5)

We will refer to the non-negative integersNABγ

αβC as fusion coefficients. By definition of the
dual multiplication we have, forπ, ρ ∈ D(G)? andf ∈ D(G)

〈π ⊗ ρ,1(f )〉 = 〈π ? ρ, f 〉. (4.6)

Thus, upon taking the trace we find that for allf ∈ D(G)
tr(πAα ⊗ πBβ (1(f ))) =

∑
C,γ

N
ABγ

αβC tr(πCγ (f )). (4.7)

Using (4.6) we deduce the following lemma.

Lemma 4.3. The characters of the quantum doubleD(G) of a finite groupG form a ring over
Z under the multiplication?. The multiplication rule is determined by the fusion coefficients
N
ABγ

αβC :

χAα ? χ
B
β =

∑
C,γ

N
ABγ

αβC χ
C
γ . (4.8)
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5. SL(2,Z)-action, Fourier transform and the Verlinde formula

In this section, a central role is played by a natural action of the groupSL(2,Z) of integer
unimodular 2× 2 matrices on spaceC(Gcomm). Let

M =
(
a b

c d

)
(5.1)

with a, b, c, d integers such thatad − bc = 1, be a generic element ofSL(2,Z) and define a
right action onGcomm via

(x, y)M := (xayc, xbyd). (5.2)

This induces an action ofM ∈ SL(2,Z) on elementsf ∈ C(Gcomm), which we write as

(Mf )(x, y) := f (xayc, xbyd). (5.3)

The generators

S =
(

0 −1
1 0

)
T =

(
1 1
0 1

)
(5.4)

satisfy the modular relation

(ST )3 = S2 (5.5)

andS4 = 1, and both have a natural interpretation within the quantum doubleD(G). To see
this, first note that the actions

(Sf )(x, y) = f (y, x−1) (5.6)

and

(Tf )(x, y) = f (x, xy) (5.7)

also make sense for generalf ∈ C(G×G). We keep the notation (5.6) and (5.7) even when
the argumentsx andy do not commute. Note thatS andT are unitary operators onC(G×G)
with the inner product (2.13). Moreover, one finds that the action ofT onf ∈ C(G ×G) is
equal to the multiplication off by the central elementc (2.5):

Tf = c • f. (5.8)

Acting onC(G × G), S andT no longer satisfy the modular relation (5.5) but we still have
S4 = 1. This last property and the following convolution theorem are our reasons for calling
S a Fourier transform.

Theorem 5.1. If f, g ∈ C(G×G) andsupp(f ) ∈ Gcomm then

S(f ? g) = S(f ) • S(g) and S(f • g) = S(g) ? S(f ). (5.9)

Proof. If the first factor in a•-product has support inGcomm, the formulae simplify, yielding

(S(f ) • S(g))(x, y) =
∫
G

f (z, x−1)g(z−1y, x−1) dz

= (S(f ? g))(x, y).
Similarly we have

(S(g) ? S(f ))(x, y) =
∫
G

g(y, z−1)f (y, x−1z) dz

=
∫
G

f (y,w) g(y,w−1x−1) dw

= (S(f • g))(x, y)
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where we have again used supp(f ) ∈ Gcommand exploited the invariance of the measure under
the change of integration variablew = x−1z. �

SinceS leaves the space of functions with support inGcomm invariant, we deduce the
following

Corollary 5.2. If f, g ∈ C(G×G) andsupp(f ) ∈ Gcomm then

S−1(f • g) = S−1(f ) ? S−1(g) and S−1(g ? f ) = S−1(f ) • S−1(g). (5.10)

At this point it is instructive to make contact with related discussions of Fourier transforms
in the literature. By defining a slight variant of the operatorS we can establish a connection
with the non-Abelian Fourier transform given by Lusztig in [10,11]. Forf ∈ C(G×G) put

(Uf )(x, y) := f (y, x) (J1f )(x, y) := f (x−1, y) (J2f )(x, y) := f (x, y−1).

(5.11)

ThenU = J2S = SJ1. The operatorsU , J1, J2 correspond to 2× 2 matrices with integer
entries but with determinant−1. Note also that the operatorsU , J1 andJ2, like S, leave
the space of functions with support inGcomm invariant and commute with conjugations by
elements ofG. We can therefore in particular consider the restriction ofU to C0(Gcomm). It
turns out that the matrix elements ofU with respect to the basis of characters formally coincide
with Lusztig’s Fourier kernel:

UBA
βα : = |G|−1〈UχAα , χBβ 〉

= 1

|NA| |NB |
∑
g∈G

gAggBg
−1=ggBg−1gA

χα(ggBg
−1)χβ(g−1gAg)

=: {(gA, α), (gB, β)}. (5.12)

However, Lusztig takes{ , } with values in the fieldQl , i.e., in an algebraic completion of the
fieldQl of l-adic numbers. He also has a bar operation onQl .

Straightforward computations shows that the following analogues of theorem 5.1 hold.
Forf, g ∈ C(G×G) we have

J1(f ) ? J1(g) = J1(g ? f ) J1(f ) • J1(g) = J1(f • g)
and J2(f ) ? J2(g) = J2(f ? g). (5.13)

If supp(f ) ∈ Gcomm one checks that furthermore

U(f ) ? U(g) = U(f • g) and U(f ) • U(g) = U(f ? g). (5.14)

Finally, if supp(f ) and supp(g) ∈ Gcomm then

J2(f ) • J2(g) = J2(g • f ). (5.15)

In the abstract setting of tensor categories, a quantum Fourier transform was defined by
Lyubashenko in [12] and discussed further in [13,14] for finite-dimensional factorizable ribbon
Hopf algebras. Applied toD(G) and in our notation their formula for the Fourier transformS̃
of an elementf of D(G) reads

S̃f := (1⊗ h) ◦ (R−1 • (1⊗ f ) • R−1
21 ). (5.16)

An explicit calculation shows that

(S̃f )(x, y) = f (xy−1x−1, x). (5.17)

and, therefore, the relation betweenS̃ andS can be expressed via

S̃ = κ ◦ S. (5.18)



Fourier transform and the Verlinde formula 8547

The fourth power of the map̃S is not equal to the identity, but if, following [13], one defines
T̃ = T −1 one finds that the modular relation(S̃T̃ )3 = S̃2 is satisfied. Convolution formulae
similar to ours can be proven for the map (5.16). Again, at least one of the two elementsf

andg to be multiplied has to have support inGcomm. Finally, we observe that restricted to
C(Gcomm), the mapS̃ agrees with ourS−1.

For the rest of this paper we focus our attention on the spaceC0(Gcomm). In particular, we
consider the restriction of the mapS toC0(Gcomm), and again denote it byS. The characters
form a natural orthogonal basis of the spaceC0(Gcomm), and we define the matrixSBAβα as the
matrix representing the mapS on the basis of characters:

SBAβα := |G|−1〈SχAα , χBβ 〉. (5.19)

Here the normalization is chosen so thatSχAα =
∑

B,β S
BA
βα χ

B
β . The matrixSBAβα is unitary

because the mapS is. Using the explicit expression for the characters (3.7) one finds the
following formula, first given in [6]:

SBAβα =
∫
G

∫
G

δe(xyx
−1y−1)1A(x)1B(y)χα(B

−1
x yBx)χβ(B

−1
y xBy) dx dy. (5.20)

This expression shows that the matrixSABαβ is symmetric,SABαβ = SBAβα . Since it is also unitary
its inverse is given by its complex conjugate. We can also read off the useful relation

S0A
1α =

1

nAα
. (5.21)

Armed with this notation, we can now use the convolution theorem to relate the• and
?-ring structures of the characters. The result is the Verlinde formula.

Theorem 5.3 (Verlinde formula). Acting on characters, the inverse Fourier transformS−1

diagonalizes the fusion rules ofD(G). The fusion coefficients can be expressed in terms of the
matrixSABαβ :

N
ABγ

αβC =
∑
D,δ

SDAδα S
DB
δβ S

CD

γ δ

S0D
1δ

. (5.22)

Proof. It follows from the definition ofS and from lemma 4.2 that

SχAα • χBβ =
SBAβα

S0B
1β

χBβ .

Now applyS−1 to both sides and use the first formula in corollary 5.2 to obtain

χAα ? S
−1χBβ =

SABαβ

S0B
1β

S−1χBβ

yielding the diagonalized fusion rules, with eigenvaluesSABαβ /S
0B
1β . A quick derivation of the

formula for the fusion coefficients follows again from the definition ofS and from lemma 4.2:

SχAα • SχBβ =
∑
D,δ

SDAδα S
DB
δβ

S0D
1δ

χDδ .

Again applyS−1 to both sides and use the first formula in corollary 5.2 to obtain

χAα ? χ
B
β =

∑
Cγ

(∑
D,δ

SDAδα S
DB
δβ S

CD

γ δ

S0D
1δ

)
χCγ .
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Comparing this expression with (4.8) shows that the expression in brackets is equal to the
fusion coefficientNABγ

αβC . �

Remark. There is an interesting connection with Lusztig’s matrixUAB
αβ (5.12) here. We find

thatUAB
αβ = UBA

βα = (U−1)BAβα and thatUAB
αβ = SABαβ . Verlinde’s formula can also be expressed

in terms ofU :

χAα ? Uχ
B
β =

UBA
βα

U0B
1β

UχBβ (5.23)

and

N
ABγ

αβC =
∑
D,δ

UDA
δα U

DB
δβ U

CD
γ δ

U0D
1δ

. (5.24)

The simplicity of our proof of the Verlinde formula shows that the Fourier transformS

is a very natural tool for proving the Verlinde formula forD(G). While we have restricted
attention to a particular ribbon Hopf algebra here, we have tried to indicate as far as possible
how our definitions and equations forD(G) can be formulated using only natural operations
(such the Haar measure, the antipode, the universalR-matrix or the central ribbon element)
which exist for a large class of (quasi-triangular ribbon) Hopf algebras. More generally it is
natural to ask for which class of (quasi) Hopf algebras a Fourier transform with analogous
properties can be defined. In view of the tight connection between fusion rules in rational
conformal field theory and tensor decomposition rules in (quasi-)Hopf algebras (see e.g. [23],
or [7] for a review) such a generalized Fourier transform, if it exists, could be expected to play
an important role in both Hopf algebra theory and conformal field theory.
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