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Abstract. We define a Fourier transfori$ for the quantum doubl®(G) of a finite groupG.
Acting on characters dD(G), S and the central ribbon element b G) generate a unitary matrix
representation of the groupL(2, Z). The characters form a ring over the integers under both
the algebra multiplication and its dual, with the latter encoding the fusion ruléx(6f). The
Fourier transform relates the two ring structures. We use this to give a particularly short proof of
the Verlinde formula for the fusion coefficients.

1. Introduction

The quantum doubl®(G) of a finite groupG is a quasi-triangular ribbon Hopf algebra [1]
constructed, via Drinfeld’s double construction [2], out of the Hopf alg€hi@) of C-valued
functions onG. Such quantum doubles arise in physics in orbifold conformal field theories [3]
and in the classification of flux-charge composites in the massive phases of (2+1)-dimensional
gauge theories [4,5]. The mathematical structur®of;) was clarified in [6]. There and
in [3] it was also pointed out that the set of irreducible representation3(6f) carries a
representation of the groufy.(2, Z) by unitary, symmetric matrices. In particular, one has a
symmetric and unitary matri and a diagonal, unitary matrik acting on the set of irreducible
representations which satisfy the modular relati®f)® = 52 andS* = 1. Although perhaps
surprising from the point of view of Hopf algebras, the appearance of t{&, Z) action in
the representation theory 8f(G) is physically motivated by application @ (G) in orbifold
conformal field theories. In particular, it has already been pointed out in [3] that the riatrix
plays the role of the Verlinde matrix which diagonalizes the fusion rules in orbifold conformal
field theory (for a general review of fusion rules in conformal field theory we refer the reader
to [7]). As a result one has a Verlinde formula [8] for integer fusion coefficients in terms of
(generally non-integer) matrix elements of the Verlinde masrix

A central goal of this paper is to understand the role of the gr&ug2, Z) in the
representation theory @ (G) without reference to conformal field theory. Our starting point
here is the set of characters of irreducible representations 6. The groupSL(2, Z) acts
on this set in a geometrically natural way. We identify two generafandT of this action
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(satisfying(ST)® = $2 andS* = 1) which play a natural role in the theory 8f(G) and its

dual D(G)*. It was already noted in [6] that the diagonal matfixs related to the central
ribbon element oD (G). As vector spaces, both(G) and D(G)* can be identified with the
spaceC (G x G) of C-valued functions of; x G, and here we show th&tcan be extended

to an automorphism of the vector spatéG x G). We prove a convolution theorem for this
extension which shows that it has a natural interpretation as a Fourier transform. Returning to
the set of characters we show that it can be given a ring structure in two dual ways. One, using
the algebra multiplication, is essentially determined by Schur orthogonality relations. The
other, using the dual multiplication, encodes the fusion rul@3@¥). Our Fourier transform
relates the two ring structures, and we use this to give a very short proof of the Verlinde formula
for D(G).

Quantum doubles can also be defined for locally compact gr6ypsand we have used a
notation which anticipates the generalization of the arguments given here to quantum doubles
of locally compact groups. There are a number of technical problems, however, which we
intend to address in a future publication. Finally, we observe that the Fourier transform we
will define in this paper is related to the non-Abelian Fourier transform defined by Lusztig in
the context of finite group theory, see [10, 11], and to the quantum Fourier transform defined
by Lyubashenko in [12] and discussed further by Lyubashenko and Majid in [13, 14]. We will
clarify the relationship between these definitions and ours in the course of the paper. There
are several other places in the literature where Fourier transforms are discussed in the context
of quantum groups. The focus of [15, 16] is braided quantum groups and is thus different
from ours. In section 3.4 of [17] a Fourier transform is defined for finite-dimensional Hopf
algebras. However, when applied to the quantum double of a finite group that definition yields
something essentially different from our Fourier transform.

2. The quantum double of a finite group

Let G be a finite group, with invariant measure given by

/Gfm dz =G Y f(. (2.1)

2eG

We will use delta functions, on G, normalized so that, (y) = 0 if x # y andd, (x) = |G]|.

The quantum doubl®(G) of a finite groupG was first studied in detail in [6]. The
definitions we are about to give are equivalent to the ones given there, but we adopt a different
notation. The advantage of our notation is that it easily generalizes to the caseGviseae
locally compact Lie group [9]. As a linear space we identify the quantum danbie of G
with C(G x G). On D(G) we have a non-degenerate pairing

(oo fo) = fG /G Fu(ra ) folx, ) dx dy. 2.2)

By this pairing we can also identify the dualG)* of D(G) with C(G x G) as a linear space.
On D(G) we have multiplicatiors, identity 1, comultiplicationA, counite, antipodex
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and involution* given by

(fre f2(x,y) = / fix, 2) falz txz, 27 hy) dz
G
1(x, y) :==68.()
(Af)(x1, y15 X2, y2) ‘= f(x1x2, y1)dy, (¥2) 2.3)
o(f) = /G Fle.y)dy
kf)x,y) = fO ™ ty, y™
e,y = flyxy, y .

By duality we have multiplicatiow, identity:, comultiplicationA*, counite*, antipodec* and
involution® on D(G)*:

(fix f)(x,y) = /G iz, ) oz x, y) dz

X, y) 1= 8e(x)

(A" f)(x1, y15 X2, y2) 1= f(x1, y12)85, (v7 X131
e (f) = /G f(x,e)dx

ke, y) = fO %y, y™h

o, y) = fxLy).

Later, we will also refer to the ribbon algebra structure @fG). Following the
conventions for ribbon Hopf algebras of section 4.2 in [1], we define the univBrsadtrix
R € D(G) ® D(G):

(2.4)

R(x1, y1; X2, y2) = 8,(y1)8,(x1y; ") (2.5)
and the central ribbon element D(G):
c(x,y) = oo (k ®id)(Ra21) = 8. (xy) (2.6)

whereR,1(x1, y1; X2, ¥2) := R(x2, y2; x1, y1). The monodromy eleme@® € D(G) x D(G)
is

Q(x1, y1; X2, y2) = (Ra1 @ R)(x1, y1; X2, y2) = 8,,(x2)8,,(x; " x1x2).  (2.7)
Together withe, it satisfies the ribbon relation
Ac= Q0 te(c®0). (2.8)
In the representation theory &f(G) and D(G)* an important role is played by the Haar
functionalsh*: D(G)* — C andh: D(G) — C, respectively. They are given by

m*(f) :=/(;f(e,y)dy and h(f) :=/;f(x,e)dx. (2.9)

Here we have chosen the normalizatiori) = 4(1) = |G|. Direct computation shows left
and right invariance:
((h* ®id) o A")(f) = h*(f)e = ((id ®h*) o A*)(f) (2.10)

and similarly fork. Furthermore, centrality, positivity and faithfulnessiainds* follow from
the formulae

h(fie £5) = h*(Fx £5) = fG /G Fix, ) JaGrr ) dr dy (2.11)
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and

B ) = f f /e )P dxdy. (2.12)
Thus,C(G x G) hasa Hermi(t;iar?inner product

(f1. f2) > B*(fix f5) = (f1. f2). (2.13)

From the existence of faithful positive linear functionals®6G) and D(G)* (namelyh
andh*) we can conclude thd?(G) andD(G)* both have a faithfuk-representation on a finite-
dimensional Hilbert space, so they &re-algebras. Therefore, the theory of Woronowicz [18]
for compact matrix quantum groups holds both fafG) and D(G)*. Moreover, this theory
simplifies because we are in the finite-dimensional case, see [18], appendix A.2, and [19].
These simplifications are already evident in our explicit resultsithat id and («*)? = id,
and thath andh* are central. Furthermore, in [19] after the proof of proposition 2.2, van
Daele gives a formula in terms of dual bases for the Haar functional in the finite-dimensional
C*-algebra case. Fdp(G)* this can be written as

R*(f) =const Y (f *8,,)(x. ). (2.14)
x,yeG
A simple calculation indeed shows that this agrees with (2.9). An analogous formula
holds forh.

3. Irreducible representations and their characters

The irreducible representations of the quantum double of a finite group were classified in [6].
We adopt some of the notation used there, but for our description of the representations we
follow the approach used in the discussion of the double of a locally compact group in [9, 20].
Thus let{C4}4=o.... , be the set of conjugacy classesGnwith Co = {e}. In eachC4 pick an
elementg, and write N, for the centralizer of, in G. For later use it is also convenient to
pick, for eachx € G, an elemenB, € G such that

BXgABx_lzx if xeCja. (3.1)
Write g4 for the number of irreducible representationsMof and let{r,} be a complete
set of such representations. The labkdbk a positive integer running from 1 (for the trivial
representation) tg,. We denote the carrier spaces WYy and their dimensions hy,. Then
the irreducible representationg' of D(G) are labelled by pairéA, «) of conjugacy classes
and centralizer representations. The carrier spgtef =2 is

VA i={¢:G — V,|p(xn) = m,(nHep(x),Vx € G,Vn € Nu} (3.2)
and the action of an elemelfite D(G) is
T () (x) = /G fxgax ™ )¢ x) dz. (3.3)

The set{z2} is a complete set of mutually inequivalent irreducible magisepresentations
of D(G). We writed, , for the dimension ofV* and note thatl, , = |Cal - d,. Then,
after choosing an orthonormal basis Bf', 72 can be represented by a matiix.);;,
i,j=1,...,daq. The matrix elementerof‘)ij are elements ab(G)* and we writeM 4 ,, for
the span of the matrix elemertts?);; (i, j = 1, ..., da«). Thenitfollows from Woronowicz’s
general theory tha (G)* is the orthogonal direct sum of the spadés .. Finally, we define

the character
dA,a

Xo = Z(ﬂf)n‘- (3.4)
i=1
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Characters play a fundamental role in the following discussion. From [20] we have the
following formula:

X2 (f) = / f(zgaz™ znz ™ xe(n) dn dz. (3.5)
G JNy

Changing integration variables, this can be rewritten as

x2(f) = / / @, w)1a ()8 (vwv w ™) xe (B, 'wB,) dv dw (3.6)
GJG

wherel, is the characteristic function of the conjugacy cl@gsnormalized so thét, (v) = 1
if v e Cq and1,(v) = 0 otherwise.

By definition, characters are elementsiof(G). Using the pairing, ) we can therefore
identify them with functions otz x G. To do this explicitly we insert a delta function fgr,

X2, y) = 426, ®8,) = 8. (xyx Tty ™) 14 (x) xa (B Ly By) 3.7

and reproduce the character formula given in [6]. One checks that the characters enjoy the
orthogonality relation

(X2 xF) = 1G18apdas. (3.8)

As elements oD (G)* characters have the property that they are cocentral, i.e. they satisfy
A* x4 = o o A*x2, whereo : D(G)* x D(G)* — D(G)* x D(G)* is the flip operation,
o (A, ) = (u, A). Using again the identification db(G)* with C(G x G), the cocentrality
of the characters (3.7) means that their support lies in

Geomm = {(x,y) € G x G|xy = yx} (3.9)

and that they are invariant under the simultaneous conjugation of both arguments, in symbols
x2(gxg™t gvg™) = xA(x,y) forall g, x, y € G. These properties are also evident in the
explicit expression (3.7). We writ€ (G .omm) for the space of functions i6(G x G) whose
support lies inGcomm, and C%(Gcomm) for the space of functions i€ (Geomm) Which are
invariant under the simultaneous conjugation of both arguments. It follows from the remark
in [18] after corollary 5.10 that the characters in fact SEA0G comm). It is instructive to see

this explicitly. The dimension of°(Gcomm) is equal to the number af-conjugacy classes

in Geomm: TO count these, introduce an integer laboébr N 4-conjugacy classes iN4. Since

the number of such conjugacy classes is equal to the number of irreducible representations,
runs from 1 tog4. In the N4-conjugacy class labelled hypick an elemeng. Then every
G-conjugacy class ircomm CONtains a unique element of the fotgy, g4 ) for suitableA and

a. The number of conjugacy classes is therefore

p
dim(C%(Geomm) = ) _ da- (3.10)
A=0

This is also the number of irreducible representatiohsx) of D(G) and hence the number
of characters. By the orthogonality relation, the characters are certainly linearly independent
and therefore form an orthogonal basist G comm)-

The vector spac&€®(Gcomm) is closed under both the multiplication and the dual
multiplication x. This means that the vector space spanned by the characters can be given
two algebra structures which are dual to each other. Both these algebras are initially defined
over the fieldC, but in the following section we will show that the structure constants for both
algebras are integers. Therefore, the integer linear combinations of characters form a ring over
Z under both the multiplicatione andx.
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4. Character rings

Again following the general theory given in [18], the matrix element$);; form a complete
set of mutually inequivalent irreducible matrix corepresentatigh®f D(G)*. We therefore
have

A (i) =Y ik ® (T (4.1)
k

The quantum analogues of Schur’s orthogonality relations, given in [18], simplifptar)
becausex*)? = id. We have

(T Dijs @) = (@ ij * (THR) = apdandix 8;th* (1) /da a- (4.2)
Note that due to a standard theorem in the theory of finite groups, see [21, 22], the ratio
ng = h"O/dse = INal/dq (4.3)

is an integer. These relations are sufficient to establish the following theorem.

Theorem 4.1.The mapf +— (n)~1x2 e f is the orthogonal projection db(G)* ontoM 4 , .

Proof. We have:
(xd o f)ij, @) = (xd & iz A @) =Y (xits @Ol ()i T8

r

= Z((ﬂ(f)mm, (ﬂyc)krﬂ(ﬂf)i_i, (7)) = 84C8BC8aydpySidji(n)2.

As an immediate consequence we note the following.

Lemma 4.2. The characters of the quantum doulidG) of a finite groupG form a ring over
Z under the multiplicatiors. The multiplication rule is

X3 o x5 = 8aBdapnyxg - (4.4)

Next consider the algebra structure of the characters under the dual multipliealibis
is related to the tensor product decomposition into irreducible representations:

AB
i ® n/ff ~ @Naﬁgnf. (4.5)
Cy

We will refer to the non-negative integeNy,,/ as fusion coefficients. By definition of the
dual multiplication we have, fat, p € D(G)* and f € D(G)

(T ®p, A(S)) = (T *xp, f). (4.6)
Thus, upon taking the trace we find that for Ale D(G)
tr(ms @ T (A(F)) = D Nogdd tr(ml (). (4.7)
Cy

Using (4.6) we deduce the following lemma.

Lemma 4.3. The characters of the quantum doula¥G) of a finite groupG form a ring over

Z under the multiplication.. The multiplication rule is determined by the fusion coefficients
ABy,

N
BC

AB
x2 *X;f = E Naﬂcy)(yc. (4.8)
Cyy
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5. SL(2, Z)-action, Fourier transform and the Verlinde formula

In this section, a central role is played by a natural action of the g&dug, Z) of integer
unimodular 2x 2 matrices on spac€(Gcomm). Let

M= (‘c‘ Z) (5.1)

with a, b, ¢, d integers such thatd — bc = 1, be a generic element 6f.(2, Z) and define a
right action onG¢omm Via

(x, )M = (x*y°, xby?). (5.2)
This induces an action dff € SL(2, Z) on elements € C(Gcomm), Which we write as
(Mf)(x, y) == fxy, x"y)). (5.3)

The generators
0 -1 11
=0 (3 ) 50
satisfy the modular relation

(ST)® = §° (5.5)

andS* = 1, and both have a natural interpretation within the quantum daDbf&). To see
this, first note that the actions

SHC,Y) = f,x™ (5.6)
and

(TF)(x,y) = f(x,xy) (5.7)
also make sense for generak C(G x G). We keep the notation (5.6) and (5.7) even when
the arguments andy do not commute. Note thatandT are unitary operators aii(G x G)
with the inner product (2.13). Moreover, one finds that the actiofi oh f € C(G x G) is
equal to the multiplication of by the central element(2.5):

Tf=cef. (5.8)
Acting onC(G x G), S andT no longer satisfy the modular relation (5.5) but we still have

S§% = 1. This last property and the following convolution theorem are our reasons for calling
S a Fourier transform.

Theorem 5.1.1f f, g € C(G x G) andsupif) € Geomm then
S(f*g) =S(f)eS(g) and S(feg)=S(g)*S(f). (5.9)

Proof. If the first factor in as-product has support i comm, the formulae simplify, yielding
(5 @ SN0 = [ Fex ety
G
= (S(f *g)(x, y).

Similarly we have

(S(g) * S(fN(x,y) = /G g0z Hf . x o) dz

=/Gf(y, w) gy, wx™h) dw
=(S(feg)lx,y)
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where we have again used sypp € G.ommand exploited the invariance of the measure under
the change of integration variable = x~z. a

Since S leaves the space of functions with supportGg,mm invariant, we deduce the
following

Corollary 5.2. If f, g € C(G x G) andsupf f) € G omm then
SHfeg) =S (f)*S(g) and SHgxf)=5(f) e S (g). (5.10)

At this pointitis instructive to make contact with related discussions of Fourier transforms
in the literature. By defining a slight variant of the operafone can establish a connection
with the non-Abelian Fourier transform given by Lusztig in [10, 11]. Fos C(G x G) put
UNHx ) =f0) (N =Fahy) (2N y) = fx,y ™.

(5.11)
ThenU = J,S = SJ;. The operatord/, J1, Jo correspond to & 2 matrices with integer
entries but with determinant1l. Note also that the operatots, J; and J;, like S, leave
the space of functions with support Gomm invariant and commute with conjugations by
elements ofG. We can therefore in particular consider the restrictiot/db C%(Gcomm). It
turns out that the matrix elementsi@iwith respect to the basis of characters formally coincide
with Lusztig’s Fourier kernel:

Uplt o =1GI ™ {UXZ xf)
1 —
=— > Xa (2888 D xp(871g48)
|Nal |NB| e
848888 "=8888 "ga
=:{(ga, @), (g5, B)}. (5.12)

However, Lusztig takes, } with values in the field),, i.e., in an algebraic completion of the
field Q, of /-adic numbers. He also has a bar operatiofpn
Straightforward computations shows that the following analogues of theorem 5.1 hold.
For f, g € C(G x G) we have
J1(f) x J1(g) = Ji(g * f) Ji(f) e Ji(g) = Ji(feg)
and J2(f) x J2(8) = Jo(f x g). (5.13)

If supp(f) € GcommOne checks that furthermore
U(f)xU(g) =U(feyg) and U(f)eU(g) =U(fxg). (5.14)
Finally, if supp(f) and suppg) € Geommthen

Jo(f) @ J2(g) = J2(g e ). (5.15)

In the abstract setting of tensor categories, a quantum Fourier transform was defined by
Lyubashenko in [12] and discussed further in [13, 14] for finite-dimensional factorizable ribbon
Hopf algebras. Applied t®(G) and in our notation their formula for the Fourier transfafm
of an elementf of D(G) reads

Sf:=1®h) o (R e (1® f)e Ry (5.16)
An explicit calculation shows that
S, y) = flay ™ x 7 x). (5.17)

and, therefore, the relation betwegmand S can be expressed via
S=koS. (5.18)
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The fourth power of the ma$ is not equal to the identity, but if, following [13], one defines
T = T-! one finds that the modular relatig§7)3 = $2 is satisfied. Convolution formulae
similar to ours can be proven for the map (5.16). Again, at least one of the two elefhents
andg to be multiplied has to have support @vomm. Finally, we observe that restricted to
C (G comm), the mapS agrees with ous .

For the rest of this paper we focus our attention on the sp86€ .omm). In particular, we
consider the restriction of the majpto C°(G¢omm), and again denote it hy. The characters
form a natural orthogonal basis of the sp&%G comm), and we define the matrlxgj as the
matrix representing the mapon the basis of characters:

Spt = 1GI7HSxg s xf)- (5.19)

Here the normalization is chosen so tsgt! = >~ , ; Sg xf. The matrixSg/ is unitary
because the mag is. Using the explicit expression for the characters (3.7) one finds the
following formula, first given in [6]:

SBA = f / 8. (ryx Ly D1, (0015 ()70 (B Ly BT (B, x By) dx dy. (5.20)
GJG

This expression shows that the matsi’ is symmetric,S;” = Sg. Since itis also unitary
its inverse is given by its complex conjugate. We can also read off the useful relation

1
S — —, (5.21)

Armed with this notation, we can now use the convolution theorem to relate dmel
*-ring structures of the characters. The result is the Verlinde formula.

Theorem 5.3 (Verlinde formula). Acting on characters, the inverse Fourier transfosm!
diagonalizes the fusion rules 8f(G). The fusion coefficients can be expressed in terms of the
matrix S7;:

DA SDB§CD
ABy Z sa D8 Oys
Naﬁc —_— T. (5-22)

D.,$§

Proof. It follows from the definition ofS and from lemma 4.2 that
BA

A B Ba B
SXa ® X5 = So5 X -
18

Now apply S~ to both sides and use the first formula in corollary 5.2 to obtain

SAﬁB

A -1_B Q, -1_B

Xa *S X5 = 055 Xp
1

yielding the diagonalized fusion rules, with eigenvalti§§/5?§. A quick derivation of the
formula for the fusion coefficients follows again from the definitiorf@nd from lemma 4.2:
A B st.iYA SS%B D
SXa .SX/S = ZSTXB .
D,§ 15

Again applyS—* to both sides and use the first formula in corollary 5.2 to obtain

c

DA ¢DBTCP
Ssa Ssp Sys )
—op—— Xy -

o =Y (2

Cy D,
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Comparing this expression with (4.8) shows that the expression in brackets is equal to the
fusion coefficientV, ;.7 . 0

Remark. There is an interesting connection with Lusztig’'s matvjf%B (5.12) here. We find
thatUg? = UG} = (U™Y 42 and that))} = S(fﬁ?. Verlinde’s formula can also be expressed

in terms ofU:
BA

U o
X;‘*UX; = %B lef (5.23)
Ulﬂ
and
UDAUDBUCD
NABY _ Zda 7B Tvé 5.24
apC DX; U (5.24)

The simplicity of our proof of the Verlinde formula shows that the Fourier transf®rm
is a very natural tool for proving the Verlinde formula fox(G). While we have restricted
attention to a particular ribbon Hopf algebra here, we have tried to indicate as far as possible
how our definitions and equations fBr(G) can be formulated using only natural operations
(such the Haar measure, the antipode, the univ&®salatrix or the central ribbon element)
which exist for a large class of (quasi-triangular ribbon) Hopf algebras. More generally it is
natural to ask for which class of (quasi) Hopf algebras a Fourier transform with analogous
properties can be defined. In view of the tight connection between fusion rules in rational
conformal field theory and tensor decomposition rules in (quasi-)Hopf algebras (see e.g. [23],
or [7] for a review) such a generalized Fourier transform, if it exists, could be expected to play
an important role in both Hopf algebra theory and conformal field theory.
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